Hydrocarbon Blending, Storage, and Distribution Facility

Marine Terminal - Pacific Coast

In-Line Blending Station. General Approach:

Market assessment

- The optimal commercial operation for the Port's Marine Terminal would be one that combines a storage terminal and a blending facility.
- Despite having a sound demand CAGR, the local market has a high concentration in 3 players. This is an opportunity but also a commercial risk that can be hedged by building a blending facility capable of producing 250,000 barrels of finished products with 2.5 rounds per month.

Operational assumptions

- Assuming the storage facility would have a 500,000 barrels capacity.
 - → 250,000 barrels (nominal) can be sold directly in the local market, with a 2.5 times month factor that would propel sales to 531,250 barrels per month (85% operational).
 - → 250,000 barrels can be reexported to other countries, with a 3 times per month factor that would deliver 637,500 barrels per month (two MR1 or one large tanker).

Option 1.

Basic Blending System

(storage terminal complexity, two to three streams for blending per month)

In addition to the final products storage and dispatch, plus the marine off/on-loading assets.

- Tanks for every component with connecting pipes and level and flow measurement systems.
- The base gasoline / diesel (fuel oil) will be the one with the larger volume.
- Approx. 10% of the total volume for octane/cetane boosters.
- One tank for additives with its level and flow measurement system.
- On-line analyzers with a sample analyzer flow system.
- Control room equipped with pipeline control and management system, software for supervision and validation, and metering control cabinets.
- Custody-transfer metering systems
- Finished products storage tanks

Option 2.

Complex Blending System

(refinery complexity, two to three streams for blending per month)

In addition to the final products storage and dispatch, plus the marine off/on-loading assets.

- Tanks for main (6 to 7) with their pipes and their level and flow measurement systems.
- One tank for additives with its level and flow measurement system.
- On-line analyzers with a sample analyzer flow system.
- Pipeline control and management system (control room)
- Software for evaluation —supervision and validation—
- Metering control cabinets.
- Custody transfer metering systems
- Prover and master meters
- Finished products storage tanks

In-line blending components

Key infrastructure for

In-line blending

- Components for blending (illustrative for a complex operation):
 - Base gasoline (or base diesel component)
 - → Octane boosters (such as ethanol, MTBE, and TAME)
 - → Additives
- Each component needs a dedicated tank that will be connected through pipes.

- Components for blending (illustrative for a complex operation):
 - → Isomerate
 - → Butane

 - → Reformate
 - Hydrocracked / FCC gasoline / distillate
- Each component would need dedicated tanks do the gasoline and diesel blending.

Alkylate

→ Butane

→ Naphtha

Hydrocarbon Blending, Storage, and Distribution Facility

Marine Terminal - Pacific Coast

In-Line Blending Station. Incentive for Off-takers: Building a blending facility provides traders with a price advantage over their competitors on the Pacific Coast.

Weighting and estimating the gasoline mix with a linear blending model

- The average weighted gasoline molecule price was 109.9 USD/b, based on a linear model with a 90% gasoline and 10% ethanol mix.
- This mix brings up an octane number and RVP according to the local market regulation.

Gasoline blending components

(illustrative example)

Summer gasoline blend @Regular gasoline

Component	Percent	Octane	RVP	Octane W Avg	RVP W Avg
Reformate @100 RON	11.0%	94.1	3.2	10.35	0.35
FCC Gasoline	35.5%	84.7	1.4	30.06	0.50
Alkylate @C3= @C4=	8.0%	93.8	5.2	7.50	0.412
Butane @C4	10.6%	92.5	52.0	9.805	5.51
Natural Gasoline	23.4%	64.0	11.1	14.98	2.60
Raffinate	1.5%	60.0	6.0	0.9	0.09
Ethanol	10.0%	116.0	5.0	11.6	0.5
Total	100.0%			85.2	10.0

Source: Author, based on multiple public sources.

Hydrocarbon Blending, Storage, and Distribution Facility

Marine Terminal - Pacific Coast

In-Line Blending Station. Incentive for Off-takers: Building a blending facility provides traders with a price advantage over their competitors on the Pacific Coast.

Option 1.

Basic Blending System

(storage terminal complexity, two to three streams for blending)

Profitability potential above regular tank farms

Option 2.

Complex Blending System

(refinery complexity, multiple streams)

Profitability potential above regular tank farms

